Perhaps the most cited advantage of automation in industry is that it is associated with faster production and cheaper labor costs. Another benefit could be that it replaces hard, physical, or monotonous work.[42] Additionally, tasks that take place in hazardous environments or that are otherwise beyond human capabilities can be done by machines, as machines can operate even under extreme temperatures or in atmospheres that are radioactive or toxic. They can also be maintained with simple quality checks. However, at the time being, not all tasks can be automated, and some tasks are more expensive to automate than others. Initial costs of installing the machinery in factory settings are high, and failure to maintain a system could result in the loss of the product itself. Moreover, some studies seem to indicate that industrial automation could impose ill effects beyond operational concerns, including worker displacement due to systemic loss of employment and compounded environmental damage; however, these findings are both convoluted and controversial in nature, and could potentially be circumvented.[43]
La plupart du temps, les tests sont uniquement réalisés de façon manuelle. Pourtant, il existe plusieurs outils permettant de couvrir le périmètre de ces tests. De plus ces outils permettent également d’automatiser ces tests, ce qui est un gain de temps considérable non seulement dans l'exécution du tests, mais aussi en ce qui concerne le tracking de bogues
Dans le chapitre « L'automatisation de l'instrumentation »  : […] de la micro-informatique, de la robotique et de la miniaturisation permettent d'automatiser un grand nombre de procédures d'analyse autrefois longues et laborieuses. L'utilisation de l'appareillage devient plus simple et plus fiable. Par exemple, un spectromètre moderne de paillasse, couplé à un chromatographe, peut ne plus comporter aucun bouton […] Lire la suite☛ http://www.universalis.fr/encyclopedie/chimie-analytique/#i_2513
Industrial automation deals primarily with the automation of manufacturing, quality control and material handling processes. General purpose controllers for industrial processes include Programmable logic controllers, stand-alone I/O modules, and computers. Industrial automation is to replace the decision making of humans and manual command-response activities with the use of mechanised equipment and logical programming commands. One trend is increased use of Machine vision to provide automatic inspection and robot guidance functions, another is a continuing increase in the use of robots. Industrial automation is simply require in industries.
When digital computers became available, being general-purpose programmable devices, they were soon applied to control sequential and combinatorial logic in industrial processes. However these early computers required specialist programmers and stringent operating environmental control for temperature, cleanliness, and power quality. To meet these challenges this the PLC was developed with several key attributes. It would tolerate the shop-floor environment, it would support discrete (bit-form) input and output in an easily extensible manner, it would not require years of training to use, and it would permit its operation to be monitored. Since many industrial processes have timescales easily addressed by millisecond response times, modern (fast, small, reliable) electronics greatly facilitate building reliable controllers, and performance could be traded off for reliability.[89]
Le test d'intégration est une phase dans les tests, qui est précédée des tests unitaires. C’est le développeur qui s’occupe de les élaborer. Il s’agit de vérifier le bon fonctionnement des différents modules d’un code source et de leurs interactions. Ces test ressemblent beaucoup au tests unitaires. Pour différencier les tests unitaires et les test d’intégration, un test unitaire est fait pour tester un morceau de code ou un module seul, de façon cloisonné, tandis qu’un test d’intégration est fait pour tester l’assemblage et les interaction des mêmes modules.

Starting in 1958, various systems based on solid-state[27][28] digital logic modules for hard-wired programmed logic controllers (the predecessors of programmable logic controllers (PLC)) emerged to replace electro-mechanical relay logic in industrial control systems for process control and automation, including early Telefunken/AEG Logistat, Siemens Simatic (de), Philips/Mullard/Valvo (de) Norbit, BBC Sigmatronic, ACEC Logacec, Akkord (de) Estacord, Krone Mibakron, Bistat, Datapac, Norlog, SSR, or Procontic systems.[27][29][30][31][32][33]


cents ans. Mais les outils numériques peuvent influencer leur mise en œuvre. Par exemple, pouvoir fournir immédiatement un retour pertinent à un élève lors de la réalisation d’une série d’exercices peut favoriser le processus d’automatisation. De même, pour comprendre un phénomène dynamique complexe (comme le galop du cheval), le fait de pouvoir […] Lire la suite☛ http://www.universalis.fr/encyclopedie/apprentissage-avec-le-numerique/#i_2513

×